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 Getting to understand a system – quite a challenge
1. To create a model
 An abstraction of the system – captures the system’s important features

2. To learn the system’s behavior 
 By measuring its “spontaneous” output or its input-output relationship

 Pessimist view
 All models are wrong since they only represent part of the real thing
 All measurements are wrong too because they are also incomplete and 

noisy as well
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 Kalman filter approach
 A more optimistic view
 To optimally combine the not so perfect information obtained via both 

modeling and measurements  the best possible knowledge about a 
system’s state

 An example of a so-called least-square filter
 Signal and noise separation using a minimum square error fit
 This principle – first introduced by Norbert Wiener in the late 1940s 
 novel and appealing but not easy to apply in practical engineering 
problems

 The basis for an algorithm using the state space method introduced by 
Rudolf E. Kalman in 1960  a practical procedure to implement the 
novel least-squre filtering method although not initially recognized
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 Basic idea
 Multiple (probably regular) measurements of a system’s output 

these measurements and knowledge of the system – used to 
reconstruct the state of the system

 Steps in the Kalman filter process:
1. A priori estimate of the state of the system before a measurement is made
2. Subsequently, after the measurement, a new a posteriori estimate by fusing the 
a priori prediction with this latest measurement

In examples
 Trivial dynamics assumed: prediction of the next state = the current state
 More complex system dynamics

 The prediction step 1 – reflect this complexity
 Wouldn’t change step 2 (i.e., the procedure of the assimilation/fusion of a 

prediction with a measurement)
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 Normal or Gaussian Distribution
 The noise components in the Kalman filter approach in this chapter – Gaussian 

white noise terms with zero mean
 Cf. Kalman filter versions with non-Gaussian noise

 Probability density function (PDF) of the normal or Gaussian distribution:
 μ: mean (zero in this case), σ: standard deviation

 Minimum Mean-Square Error
 Several ways to achieve optimal fit of a series of predictions with a series of 

observations
 Minimum mean-square error (MMSE) approach

 The square of difference btw an estimate �𝑦𝑦 and a target value y, �𝑦𝑦 − 𝑦𝑦 2 impression of 
how well the two fit

 A series of N estimates and target values
 A quantification of the error E by determining the sum of the squares of their differences 
𝐸𝐸 = ∑𝑖𝑖=1𝑁𝑁 �𝑦𝑦 − 𝑦𝑦 2 minimize this w.r.t. the parameter of interest

 Ex: �𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑥𝑥𝑖𝑖 the minimum of E w.r.t. parameter a found by ⁄𝜕𝜕𝐸𝐸
𝜕𝜕𝑎𝑎 = 0
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 Recursive Algorithm
 Resting potential of a neuron based on a series of measurements: z1, z2, …, zn

 The estimated mean of the n measurements 
– used as the estimate of the resting potential:
 Not an optimal basis for the development of an algorithm
 n memory locations needed for measurements z1~zn

 All measurements need to be completed before the estimate

 Recursive approach
 Used in the Kalman filter algorithm
 Estimates the resting potential after each measurement using updates for each 

measurement: 
 ,                                                        ,

 Update the estimate at each measurement 
 Only need memory for the previous estimate and the new measurement to make a 

new estimate
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 Data Assimilation
 Ex: two measurements y1 and y2

 Combine/fuse these observations into a single estimates y
 The uncertainty of the two measurements – given by their variance (=standard 

deviation squared) s1 and s2, respectively
 Fusion principle used in the 

Kalman approach based on MMSE:                                          for the new estimate 
 Its variance s obtained from:
 an improved estimate based on two separate ones (Fig. 19.1)

 Fig. 19.1
 Two distributions with mean values of 5 and 10 & s.d.’s of 1 and 3  the best estimate 

– reflected by a distribution with a mean of 5.5. and s.d. of 0.9 ≈ 0.95
 The measurement with less uncertainty – more weight in the estimate; the one with 

more uncertainty – only contributes a little
 In the context of Kalman fiter

 The terms assimilation and blending – sometimes used instead of data fusion 
describe the combination of estimate and measurement
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FIGURE 19.1 An example of the fusion procedure.
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 State Model
 One way of characterizing the dynamics of a system = to describe 

how it evolves through a number of states
 State – a vector of variables in a state space  the system’s dynamics –

described by its path through state space
 Simple example: a moving object
 If no acceleration  its state – described by the coordinates of its position 𝑥⃗𝑥

in three dimension (3D space = its state space)
 Dynamics – seen by plotting position versus time  its velocity ⁄𝑑𝑑𝑥⃗𝑥 𝑑𝑑𝑑𝑑(the 

time derivative of its position)

 Another example:  𝑥̈𝑥1 + 𝑏𝑏𝑥̇𝑥1 + 𝑐𝑐𝑥𝑥1 = 0 (a 2nd-order ODE)
 Define 𝑥̇𝑥1 = 𝑥𝑥2 (a) & rewrite the ODE as 𝑥̇𝑥2 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥1 = 0 (b)  the 

single 2nd-order ODE – rewritten as two 1st-order ODEs
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 State Model
 Another example:  𝑥̈𝑥1 + 𝑏𝑏𝑥̇𝑥1 + 𝑐𝑐𝑥𝑥1 = 0 (a 2nd-order ODE)
 Define a system state vector:

 Not the position of a physical object but a vector that defines the state of 
the system

 (a) & (b) – compactly written as: 
o The dynamics – expressed as an operation of matrix A on state vector 
𝑥⃗𝑥(this notation – used as an alternative to any ODE)

 Bayesian Analysis
 Kalman filter approach: update the pdf (i.e., the mean and variance) 

of the state x of a system based on measurements z, i.e., 𝑝𝑝 𝑥𝑥|𝑧𝑧
 Conditional probabilities and distributions: the topics of Bayesian 

statistics  the Kalman approach = a form of Bayesian analysis
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 A simple version of a Kalman filter application
 Brown and Hwang (1997): a derivation for a vector observation
 Here: the equivalent simplification for a scalar
 All equations with a border

 A simple process x
 A neuron’s resting potential (i.e., its membrane potential in the absence of 

overt stimulation)
 The update rule for the state of the process:

 The process measurement z defined (as simple as possible) as:
 w and v: Gaussian white noise variables 
 Model the process and measurement noise, respectively
 Assumed stationary and ergodic (for the sake of this example)
 Mean for both = zero; the associated variance values = sw and sv

 The covariance of w and v = zero (⸪they are independent)



DERIVATION OF A KALMAN FILTER FOR 
A SIMPLE CASE

12

FIGURE 19.2 Flowchart of the Kalman
filter procedure derived in this section 
and implemented in the MATLAB script 
pr19_1.m. In this MATLAB script, steps 
1 – 2 are indicated. Step 1: Eqs. (19.19), 
(19.15), and (19.20); Step 2: Eqs. (19.21) 
and (19.22). The equations in the
diagram are derived in the text.
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 A priori estimate 𝑥𝑥𝑘𝑘−
 A prior error  𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘− the variance 𝑠𝑠𝑘𝑘−associated with this error: 

 Assimilate a measurement zk with a priori estimate 𝑥𝑥𝑘𝑘− a posteriori 
estimate 𝑥𝑥𝑘𝑘+

“hat” (i.e., �𝑥𝑥𝑘𝑘−) indicate an estimate  hats – omitted here to simplify

 A posteriori estimate 𝑥𝑥𝑘𝑘+
 Determined by the fusion of the a priori prediction and the new 

measurement:                                 (c)
 Kk: the blending factor  determine to what extent the measurement 

and a priori estimate affect the new a posteriori estimate
 A posteriori error 𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+ the variance 𝑠𝑠𝑘𝑘+ with this error:
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 Substitution of             into (c):                             


or (d)  

 𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−: the a priori estimation error & uncorrelated with 
measurement noise v

 A posteriori estimate – optimized using optimal blending in (c)
 Minimize the variance 𝑠𝑠𝑘𝑘+ (= square of the estimated error) w.r.t. Kk

 Differentiate the expression for 𝑠𝑠𝑘𝑘+w.r.t Kk & set the result to zero:

 the expression for an optimal Kk:
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 Substituting the expression for Kk in (c)
 Meaning of the optimized result:


 If a priori estimate – unreliable
 Its large variance 𝑠𝑠𝑘𝑘− → ∞: 𝐾𝐾𝑘𝑘 → 1 (ignore the estimate)
 Believe more of the measurement: 𝑥𝑥𝑘𝑘+ → 𝑧𝑧𝑘𝑘

 If the measurement – completely unreliable
 𝑠𝑠𝑣𝑣 → ∞: 𝐾𝐾𝑘𝑘 → 0 (ignore the measurement)
 Believe the a prior estimate: 𝑥𝑥𝑘𝑘+ → 𝑥𝑥𝑘𝑘−
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 An expression for 𝑠𝑠𝑣𝑣:
  : substituted in (d)

 A posteriori error based on an optimized blending factor 𝐾𝐾𝑘𝑘:
,   


 Different expressions available depending on how one simplifies (d)
 Use this here because of its simplicity
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 Projection towards the next time step at tk+1

 Depending on the model for the process to measure from
 A simple model in this example (                )
 A priori estimate of x = a posteriori estimate of the previous time step:

(e)

 Ignore the noise (w) term in (⸪the expectation of w is zero)
 In many applications, more complicated or even an extremely complex 

procedure depending on the dynamics btw tk and tk+1

 A priori estimate of the variance at tk+1:
 Based on the error of the prediction in (e)
 Substitute                     and (e) into this expression: 

 (⸪a posteriori error at tk:                    )
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 Projection towards the next time step at tk+1

 A priori variance at tk+1 associated with this expression for the a 
priori error (                 )
 Depending on the a posteriori error at tk and the variance of the noise 

process w:

 Final:                           (⸪w and the error in the estimate – uncorrelated)
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 A recording of a membrane potential of a nonstimulated neuron
 The resting potential Vm = -70 mV
 s.d.’s of the process noise and the measurement noise = 1 and 2 mV, 

respectively

FIGURE 19.3 Example of the Kalman filter 
application created with the attached MATLAB 
script pr19_1. The true values are green, the 
measurements are represented by the red dots, 
and the Kalman filter output is the blue line. 
Although the result is certainly not perfect, it can 
be seen that the Kalman filter output is much 
closer to the real values than the measurements.
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 The vector-matrix version of the Kalman filter
 Can estimate a series of variables
 Can also be used to estimate model parameters

 Constant parameter of the model or very slowly changing 
parameter (considered a constant)
 Treats and estimates this parameter as a constant with noise as 

with xk in 

 Noise component – allows the algorithm of the Kalman filter 
to find the best fit of the model parameter at hand
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